

CAIE Chemistry IGCSE 3.3 The Mole and Avogadro constant

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What is meant by 'concentration' and give the units

What is meant by 'concentration' and give the units

- The concentration of a substance is the amount of solute dissolved in a measured volume of solution
- The concentration can be measured in g/dm³ or mol/dm³

Define the mole (extended only)

Define the mole (extended only)

The mole is the unit for amount of any substance, containing the same number of particles as there are atoms in exactly 12 g of carbon-12 (1 mole= 6.02×10^{23} particles).

Define the Avogadro constant (extended only)

Define the Avogadro constant (extended only)

The number of particles in one mole of a substance. This is 6.02×10^{23} particles.

What is the equation that relates moles with the Avogadro constant? (extended only)

What is the equation that relates moles with the Avogadro constant? (extended only)

Number of particles =

moles x Avogadro's constant

What is the equation that relates amount of substance, mass and molar mass? (extended only)

What is the equation that relates amount of substance, mass and molar mass? (extended only)

Mass of a substance (in g) =

Moles (mol) x Molar mass of substance(g/mol)

What is the molar mass? (extended only)

What is the molar mass? (extended only) The molar mass is the mass of 1 mole of the substance. It is the same as the A_r / M_r of the substance but the molar mass has a unit: g/mol

Calculate the amount of substance (no. of mol) in 300g of calcium carbonate (CaCO₃) (extended only)

Calculate the amount of substance (no. of mol) in 300g of calcium carbonate ($CaCO_3$) (extended only)

- 1. Calculate the M_r of $CaCO_3$ 40 + 12 + (16 x 3) = 100
- 2. Mol= Mass \div M_r 300 g \div 100 = 3 moles of CaCO₃

D G G S PMTEducation

Calculate the mass of 0.75mol of calcium (Ca) (extended only)

Calculate the mass of 0.75mol of calcium (Ca) (extended only)

1. Find the M_r of Ca on periodic table = 40 2. Mass= M_r x mol 40 x 0.75 = 30g

How many moles are in 5.44 g of sodium chloride? (extended only)

How many moles are in 5.44 g of sodium chloride? (extended only)

```
Mr of NaCl = 23 + 35.5 = 58.5
```

```
Moles = mass / Mr
```

```
= 5.44 / 58.5
=0.0930 (3.s.f)
```

www.pmt.education

DOfS PMTEducation

How many moles are in 2.35 g of aluminium? (extended only)

How many moles are in 2.35 g of aluminium? (extended only)

Moles = mass / relative atomic mass

= 2.35 / 27

= 0.0870 (3.s.f)

Calculate the molar mass of AICl₃ (moles= 4 and mass = 534g) (extended only)

Calculate the molar mass of AICl₃ (moles= 4 and mass = 534g) (extended only) Molar mass= Mass ÷ Mol $534 \text{ g} \div 4 \text{ mol} = 133.5 \text{ g/mol}$ To check your answer, you can find the $\rm M_{\rm r}$ of AICI₃ by using the A_r of each element $27 + (3 \times 35.5) = 133.5$

D G G S PMTEducation

Calculate the number of carbon dioxide molecules in 1.5 moles of CO₂ using Avogadro constant (extended only)

Calculate the number of carbon dioxide molecules in $1.5 \text{ moles of CO}_2 \text{ using Avogadro constant (extended only)}$

Number of particles = Avogadro constant x amount of substance Number of CO₂ molecules= $6.02 \times 10^{23} \times 1.5$ Number of CO₂ molecules= 9.03×10^{23}

Calculate the number of atoms in 1.5 moles of CO₂ using Avogadro constant (extended only)

Calculate the number of atoms in 1.5 moles of CO_2 using Avogadro constant (extended only)

Number of particles = Avogadro constant x amount of substance Number of CO₂ molecules= $6.02 \times 10^{23} \times 1.5$ Number of CO₂ molecules= 9.03×10^{23} There are 3 atoms in each CO₂ molecule (2 O atoms and 1 C atom), so...

Number of atoms in 1.5 moles of CO_2 = 9.03 x 10 ²³ x 3 = 2.71 x 10 ²⁴ atoms

What is the molar volume of gas at room temperature and pressure? (extended only)

What is the molar volume of gas at room temperature and pressure? (extended only)

24 dm³

What is RTP? (extended only)

What is RTP? (extended only)

Room temperature and pressure:

- 20°C
- 1 atmosphere

What equation links molar volume at RTP and moles? (extended only)

What equation links molar volume at RTP and moles? (extended only)

Volume of gas at RTP (dm^3) = moles x 24 dm^3

Volume of gas at RTP (cm^3) = moles x 24000 cm^3

Of Station

How many moles of oxygen are in 72 dm³ at RTP? (extended only)

How many moles of oxygen are in 72 dm³ at RTP? (extended only)

Moles = volume / 24

= 72 / 24

= 3 moles

What is a limiting reagent? (extended only)

What is a limiting reagent? (extended only)

The reactant that is completely used up first, preventing the reaction continuing and determines the amount of product that can form.

0.953 g of magnesium reacts fully with chlorine: Mg + $Cl_2 \rightarrow MgCl_2$ What mass of magnesium chloride is formed? (extended only)

0.953 g of magnesium reacts fully with chlorine according to the following equation. What mass of magnesium chloride would be formed? Mg + $Cl_2 \rightarrow MgCl_2$ (extended only)

Moles of Mg = 0.953 / 24 = 0.0397

Ratio of moles of Mg:MgCl₂ is 1:1 so MgCl₂ also has 0.0397 moles.

Mass of $MgCl_2 = 0.0397 \times (24 + 35.5 + 35.5) = 3.77 g (3.s.f)$

How would you convert between cm₃ and dm₃? (extended only)

How would you convert between cm₃ and dm₃? (extended only)

$$1 dm^3 = 1000 cm^3$$

Converting cm³ to dm³ : ÷1000
 Converting dm³ to cm³ : x1000

Calculate the volume of 0.5mol of hydrogen at room temperature and pressure (Molar gas volume= 24000cm³) (extended only)

Calculate the volume of 0.5mol of hydrogen at room temperature and pressure (Molar gas vol= 24000cm³) (extended only)

Volume of gas in cm^3 = Number of moles x 24000cm³ Volume of hydrogen= 0.5 x 24000 = 12000 cm³

D PMTEducation

What equation links concentration, volume and amount of substance? (extended only)

What equation links concentration, volume and amount of substance? (extended only)

Concentration (in mol/dm³) : <u>Amount of substance (mol)</u> Volume (dm³)

How would you convert between mol/dm³ and g/dm³? (extended only)

How would you convert between mol/dm³ and g/dm³? (extended only)

mol/dm³ -> g/dm³ multiply by the M_r g/dm³-> mol/dm³ divide by the M_r

5.00 g of NaCl is dissolved in 25 cm³ of water. Calculate the concentration of the solution in mol/dm³. (extended only)

5.00 g of NaCl is dissolved in 25 cm³ of water. Calculate the concentration of the solution in mol/dm³. (extended only)

Volume in
$$dm^3 = 25 / 1000 = 0.025$$

Concentration in mol/dm³ = 0.0855 / 0.025

www.pmt.education

DOG PMTEducation

25 cm³ of dilute hydrochloric acid (HCI) is neutralised by 20 cm³ of 0.5 mol/dm³ sodium hydroxide (NaOH). What is the concentration of the hydrochloric acid? (extended only)

25 cm³ of dilute hydrochloric acid (HCI) is neutralised by 20 cm³ of 0.5 mol/dm³ sodium hydroxide (NaOH). What is the concentration of the hydrochloric acid? (extended only)

- 1. Convert volumes from cm³ to dm³:
- Work out the moles of NaOH:
 0.01 mol
- Work out the mole ratio by balancing the chemical equation:
 HCI + NaOH -> NaCI + H₂O
 1:1 ratio so number of moles of NaOH= number of moles of HCI
 So number of moles of HCI = 0.01mol
- 4. Work out the concentration of HCI: Conc. = Number of moles ÷ Volume

 $0.01 \div 0.025 = 0.4 \text{mol/dm}^3$

 $25 \text{ cm}^3 = 0.025 \text{ dm}^3$ $20 \text{ cm}^3 = 0.020 \text{ dm}^3$

Number of moles= Conc. x Vol $0.5 \times 0.02 =$

A molecule has the empirical formula $C_4H_3O_2$ and a relative molecular mass of 166. What is the molecular formula? (extended only)

A molecule has the empirical formula $C_4H_3O_2$ and a relative molecular mass of 166. What is the molecular formula? (extended only)

Empirical
$$M_r = (12 \times 4) + (1 \times 3) + (16 \times 2) = 83$$

Relative molecular mass = 166

Compare molecular mass with empirical mass = 166 / 83 = 2

So the molecular formula is double the empirical formula: C₈H₆O₄

Find the empirical formula of the following compound using their percentage masses: AI 20.2% CI 79.8% (extended only)

Find the empirical formula of the following compound using their percentage masses (extended only): Al 20.2% CI 79.8%

- 2. Divide the percentage masses by the A_r of each element Al= 20.2 ÷ 27 = 0.748 Cl= 79.8 ÷ 35.5 = 2.248
- 3. Divide by the smallest answer from step 2 to find the ratio of atoms of each element

D PMTEducation

 $AI = 0.748 \div 0.748 = 1$ $CI = 2.248 \div 0.748 = 3$

This is the simplest whole number ratio for AI : CI = 1:3 So the answer is $AICI_3$

www.pmt.education

Calculate the empirical formula for a compound containing 7.83g of Iron (Fe) and 3.37g of oxygen (O) (extended only)

D PMTEducation

Calculate the empirical formula for a compound containing 7.83g of Iron (Fe) and 3.37g of oxygen (O) (extended only)

Fe	0
56	16
7.83	3.37
7.83g ÷ 56 = 0.14	3.37 ÷ 16 = 0.21
0.14 ÷ 0.14 = 1	0.21 ÷ 0.14 = 1.5
1 x 2 = 2	1.5 x 2 = 3
Fe ₂ O ₃	
	Fe 56 7.83 7.83g \div 56 = 0.14 0.14 \div 0.14 = 1 1 x 2 = 2 Fe ₂ O ₃

DOG PMTEducation

N www.pmt.education

What is meant by the term theoretical yield? (extended only)

What is meant by the term theoretical yield? (extended only)

The maximum amount of product that would be collected under perfect reaction conditions.

Give 3 reasons why the theoretical yield of a product is not obtained (extended only)

Give 3 reasons why the theoretical yield of a product is not obtained (extended only)

- 1. Reaction may not go to completion because it is reversible
- 2. Some of the product may be lost when it is separated from the reaction mixture
- 3. Some of the reactants may react in ways different to the expected reaction

How can percentage yield be calculated? (extended only)

How can percentage yield be calculated? (extended only)

- Percentage yield =
 - Actual yield x 100

Theoretical yield

What is the percentage yield of NH_3 if 40.5 g of NH_3 is produced from 20.0 mol H_2 and excess N_2 ? (extended only)

What is the percentage yield of NH₃ if 40.5 g of NH₃ is produced from 20.0 mol H₂ and excess N₂? (extended only) Equation: N₂ + 3H₂ \rightarrow 2NH₃

Moles of ammonia = 20/1.5 = 13.3 moles

Mass of ammonia = 13.3 x (14+1+1+1) = 227 g

Percentage yield = (40.5/227) x 100 = 17.9%

How can the percentage composition of an element in a compound be calculated? (extended only)

How can the percentage composition of an element in a compound be calculated? (extended only)

Percentage mass =

Total A, of the element x 100

M_r of the compound

Calculate the percentage of calcium in calcium hydroxide (extended only)

Calculate the percentage of calcium in calcium hydroxide (extended only)

- Deduce formula of calcium hydroxide: Ca(OH)₂ since Ca2+ needs 2 OH- ions to neutralise the charge
- 2. Work out the M_r of Ca(OH)₂: 40 + (16 x 2) + (1 x 2) = 74

D PMTEducation

3. % mass: (40 ÷ 74) x 100 = 54.1 %

How can the percentage purity of a sample be calculated? (extended only)

How can the percentage purity of a sample be calculated? (extended only)

Percentage purity =

Mass of the pure substance x 100

Mass of the sample

A solution of sodium chloride contains 0.64g of NaCl in 100g of water. Calculate the percentage purity by mass of NaCl (extended only)

A solution of sodium chloride contains 0.64g of NaCl in 100g of water. Calculate the percentage purity by mass of NaCl (extended only) % purity of NaCl = x 100 = 0.64% 0.64g 1000 www.pmt.education **DOG PMTEducation**